

Full Stack Artificial Intelligence
Development for Edge Devices using GoAI

 White Paper

WP951-1.1E, 2020-09-21

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI Usage of Edge AI in the System

WP951-1.2E 1(8)

The amount of responsibility given to and expected from edge devices is growing

rapidly in all types of automotive, IoT, industrial, and consumer applications. Edge inference

is becoming a common capability in these devices to provide localized decision making,

reduced latency and cost reduction of connected nodes.

These solutions often struggle to meet the next set of customer demands on cost,

power, size as well as the flexibility to adapt and integrate over time. Additionally, the heavy

computational needs of neural networks often push beyond the performance of standard

microcontrollers. They also struggle from meeting time to market pressure while being

expected to incorporate the latest technology advancements.

Low density FPGAs can be used to address common customer constraints on cost,

power and size by providing flexible and scalable solutions dependent on the network size.

GOWIN FPGA’s specifically address this by providing scalable device densities from 1k to

55K LUTs in variety of wafer level, QFN, and BGA package options as small as 3.24mm2 on

both low power and high performance process technologies.

To improve performance and time to market of developing edge solutions for artificial

intelligence GOWIN has created a new acceleration IP and solution suite called “GoAI”

targeting their FPGA devices. The GoAI solution suite integrates GOWIN’s AI acceleration

IP into existing machine learning frameworks to improve performance by over 78x

compared to using a Cortex-M class microcontroller alone.

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI Usage of Edge AI in the System

WP951-1.2E 2(8)

Usage of Edge AI in the System

Artificial intelligence at the edge is typically used for one of two purposes in a system.

The first is to perform inference with devices that have no connectivity to the internet.

These systems use machine learning to detect some information about an input and utilize

it to control outputs of the system that are connected to it.

The second purpose is used to perform some pre-detection before sending data to the

cloud for further processing. This can be done for various reasons such as saving power by

shutting off the wireless transceiver or cost by only sending data to cloud AI services when

some pre-detection has occurred.

Deploying AI at the Edge

Artificial intelligence today uses the machine learning techniques centered around

convolutional neural networks. These networks are essentially sets of many filters or

“neurons” with coefficients or weights that are trained to identify certain key attributes of an

input. These weights are calculated through a process called “training” where a set of

inputs are provided, the output is known and the weights are updated to identify it.

Training a convolutional neural network often consumes a significant amount of

computational power. However, since it is only used to generate the weights to infer certain

attributes about the input it generally does not need to run in real time. Once a network is

trained the weights can be loaded into a network to detect attributes related to the input.

This inference often requires significantly less computing power than training.

While the computational power is significantly less for inferencing it often still exceeds

the performance of microcontrollers. This is because microcontrollers process each

computational instruction per processor clock cycle often in the sub-200Mhz range which is

not enough performance to make detections of even small machine learning networks in

real-time. Additionally, many use cases related to AI require specialized interfaces and

buffering of data. For example, camera data often needs to be stored in RAM as a frame

since filtering is performed over multiple pixels within the image at the same time.

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI Deploying AI at the Edge

WP951-1.2E 3(8)

Edge focused FPGAs address these problems easily. Parallel and pipelined

computations of the network allow for real-time performance while operating the system

more efficiently at 10’s of Mhz. Flexible interfacing allows the FPGA to connect to cameras,

microphones, biometric sensors and other inputs easily. Configurable memories allow for

buffering and retention of intermediate or layer data.

While FPGA’s provide a great avenue to make edge AI possible, a strong software

stack is needed to make development and deployment easy. Modeling software for neural

networks is available by several providers; Tensorflow, Caffe and Keras are common

names. These networks are often natively developed using floating point computations

for training and testing by the software, which causes issues when attempting to deploy a

cost and performance worthy solution at the edge.

As a result, common deployment tools such as Tensorflow Lite for microcontrollers and

Arm CMSIS-NN use an optimization process to truncate and quantize trained weight data

from floating point to 8-bit fixed point, making the resources more practical for edge focused

hardware. However, the performance is often still significant and as result an accelerator

design specifically to pipeline the convolutions and accumulations of layer data is common.

These accelerators can be designed in ASIC or FPGA to improve things further to real-time

performance.

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI A System Example

WP951-1.2E 4(8)

A System Example

To run through an entire development flow from model training to hardware design the

GoAI platform was used to perform image detection on the CIFAR10 dataset. The

performance of the GoAI accelerator was compared to an Arm Cortex-M microcontroller

running the same network in CMISIS-NN. The CIFAR10 dataset is a common dataset of 10

classification objects used to measure various performance attributes of a machine

learning system.

First, a network was trained for the system in Caffe. In this case, the network tested

used three convolution layers with varying numbers of filters. After the network was trained,

coefficients for weights and bias were obtained and the trained network was tested in Caffe

over various inputs to ensure it behaved as expected.

After that the weight and bias coefficients were truncated and quantized using script

utilities and the network was compiled to use CMISIS-NN function calls on an ARM

Cortex-M1 and M3 processor.

The optimized network was then deployed on the ARM Cortex-M1 processor with a

camera interface and frame buffer connected to the AHB bus. The neural network took

approximately 10 seconds to process one image from the camera.

Next, the GoAI accelerator was connected to the AHB bus and used to process the

network. The Cortex-M1 was still used to pass image data initially to the accelerator, load

weights and bias and configure the accelerator settings. The neural network took

approximately 0.5 seconds to process using the GoAI accelerator with delays primarily

associated with the results sent over UART.

Further analysis was performed on the Arm Cortex-M3 processor and the accelerator.

The difference between using the Arm Cortex-M3 processor by standalone versus with the

GoAI accelerator showed an ~78x performance improvement.

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI GoAI 2.0

WP951-1.2E 5(8)

GoAI 2.0

GoAI 2.0 focuses on:
1. Integration of the FPGA accelerator with TensorFlow and TensorFlow Lite

2. Targeting the GOWIN GW1NSR-4C uSoC FPGA with Cortex-M3 hard processor in

6x6mm QFN package

3. Software compiling and deployment SDK’s

4. Flexible architecture for supporting a variety of models with large number of layers

and large layer depth

The GoAI 2.0 platform uses standard TensorFlow development environments to allow

training and testing of any model. The final trained model then uses TFLiteConverter or

TocoConverter to parse and quantize the model into a *.tflite flatbuffers file. The flatbuffers

file is then parsed using the GoAI 2.0 SDK to extract model coefficients, layer parameters

and model functions.

After extracting all the necessary information from the flatbuffers file, the GoAI 2.0 SDK

loads coefficients to external SPI flash memory, C code to the embedded flash of the

Cortex-M3 and bitstream to the FPGA in the GW1NSR-4C device or other supported

GOWIN FPGA.

The architecture of the GoAI 2.0 platform allows for as deep of layers as there is

PSRAM embedded in the GW1NSR-4C and as many convolution and pooling layers as

there is memory to hold layer parameters. The GW1NSR4 has 8MB of PSRAM, which is

split into a 4MB input layer buffer and 4MB output buffer layer. This means that a layer input

and output can be up to 4MBs in size. The ITCM embedded flash within the Cortex-M3 is

32KB, which only needs to hold the control loop and the filter parameters for each layer.

The external SPI flash holds the weight and bias coefficients for each layer and can be

adjusted depending on the model size required.

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI GoAI 2.0

WP951-1.2E 6(8)

Testing of the GoAI 2.0 platform was performed using Mobilenet v1.025 and the COCO

dataset. Mobilenet is a fairly large convolutional neural network with 28 layers. 162ms

inference latency was achieved using GoAI 2.0 with this model.

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI Conclusion

WP951-1.2E 7(8)

Conclusion

Various challenges arise while attempting to efficiently perform AI at the edge within a

reasonable cost, power, size and time to market budget. Artificial intelligence at the edge is

becoming increasingly important for both unconnected and connected devices. Edge AI

solutions require an accelerator and complete software development flow to perform real

time processing and integration into common machine learning model development

software. GOWIN’s GoAI accelerator and software solution stack provides an ideal solution

to address both performance and market environment constraints.

Full Stack Artificial Intelligence Development for Edge
Devices using GoAI Support and Feedback

WP951-1.2E 8(8)

Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If
you have any questions, comments, or suggestions, please feel free to contact us directly
by the following ways:

Website: www.gowinsemi.com

E-mail: support@gowinsemi.com

Revision History

Date Version Description

09/16/2019 1.0E Initial version published.

09/30/2020 1.1E “GoAI 2.0” added.

http://www.gowinsemi.com.cn/
support@gowinsemi.com

Copyright©2020 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any denotes,
electronic, mechanical, photocopying, recording or otherwise, without the prior written
consent of GOWINSEMI.

Disclaimer

GOWINSEMI®, LittleBee®, Arora, and the GOWINSEMI logos are trademarks of
GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other
countries. All other words and logos identified as trademarks or service marks are the
property of their respective holders, as described at www.gowinsemi.com. GOWINSEMI
assumes no liability and provides no warranty (either expressed or implied) and is not
responsible for any damage incurred to your hardware, software, data, or property resulting
from usage of the materials or intellectual property except as outlined in the GOWINSEMI
Terms and Conditions of Sale. All information in this document should be treated as
preliminary. GOWINSEMI may make changes to this document at any time without prior
notice. Anyone relying on this documentation should contact GOWINSEMI for the current
documentation and errata.

	Usage of Edge AI in the System
	Deploying AI at the Edge
	A System Example
	GoAI 2.0
	Conclusion
	Support and Feedback
	Revision History
	Disclaimer

